On polynomial factorization over finite fields
نویسندگان
چکیده
منابع مشابه
Univariate Polynomial Factorization Over Finite Fields
This paper shows that a recently proposed approach of D. Q. Wan to bivariate factorization over finite fields, the univariate factoring algorithm of V. Shoup, and the new bound of this paper for the average number of irreducible divisors of polynomials of a given degree over a finite field can be used to design a bivariate factoring algorithm that is polynomial for "almost all" bivariate polyno...
متن کاملPolynomial-Time Factorization of Multivariate Polynomials over Finite Fields
We present a probabilistic algorithm that finds the irreducible factors of a bivariate polynomial with coefficients from a finite field in time polynomial in the input size, i.e. in the degree of the polynomial and log (cardinality of field). The algorithm generalizes to multivariate polynomials and has polynomial running time for densely encoded inputs. Also a deterministic version of the algo...
متن کاملOn Sparse Polynomial Interpolation over Finite Fields
We present a Las Vegas algorithm for interpolating a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the algorithm of BenOr and Tiwari in 1988 for interpolating polynomials over rings with characteristic zero to characteristic p by doing additional probes. One of the best algorithms for sparse polynomial interpolation over a finite field ...
متن کاملPolynomial factorization algorithms over number fields
Factorization algorithms over Q[X] and Fp[X] are key tools of computational number theory. Many algorithms over number fields rely on the possibility of factoring polynomials in those fields. Because of the recent development of relative methods in computational number theory, see for example (Cohen et al. 1998, Daberkow and Pohst 1995), efficient generalizations of factorization algorithms to ...
متن کاملEfficient Multivariate Factorization over Finite Fields
We describe the Maple [23] implementation of multivariate factorization over general finite fields. Our first implementation is available in Maple V Release 3. We give selected details of the algorithms and show several ideas that were used to improve its efficiency. Most of the improvements presented here are incorporated in Maple V Release 4. In particular, we show that we needed a general to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1981
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1981-0595063-3